Electrokinetic concentration and patterning of colloids with a scanning laser.
نویسندگان
چکیده
Optically-based lab-on-a-chip systems have the distinct advantage of being dynamically controlled in real time, providing reconfigurable operations that can be tuned to perform a variety of tasks. This manuscript demonstrates the concentration of liquid-suspended microparticles using a focused near-infrared laser (980 nm) and a parallel-plate electrode system. The parallel-plate electrodes consisted of an indium tin oxide-coated coverslip and a gold-coated glass substrate. When the laser was applied at 36 mW, the indium tin oxide surface is locally heated creating sharp temperature gradients on the order of 0.07(o) C/μm. When an AC field was applied, electrothermal hydrodynamic forces generated microfluidic vortices. At an AC frequency of 40 kHz, the optically controlled electro-hydrodynamics aggregated colloids at the center of fluid motion on the surface of the indium tin oxide coverslip. The nature of colloid aggregation, translation, and patterning was explored when the translational velocity of the laser spot was varied. This manuscript describes the design of the laser scanning system using commercially available components and the fabrication of the parallel-plate chip. The effect that the laser scanning rate has on the heat transfer, fluid velocity, and colloid aggregation is discussed.
منابع مشابه
Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters.
Reliable and simple techniques for rapid assembly and patterning of colloid architectures advance the discovery and implementation of such nanomaterials. This work demonstrates rapid electrokinetic two-dimensional assembly of colloidal structures guided by the geometry of thin film heaters within a parallel-plate device. This system is designed to enable either independently addressable or mass...
متن کاملNanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics
In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...
متن کاملOptical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...
متن کاملOptically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface.
We study a recently demonstrated AC electrokinetic technique for manipulation and concentration of colloidal particles on an electrode surface. The technique uses indium tin oxide (ITO)-based parallel-plate electrodes on which highly localized infrared (1064 nm) laser illumination is shone. We show that the highly localized laser illumination leads to a highly nonuniform heating of the electrod...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electrophoresis
دوره 33 13 شماره
صفحات -
تاریخ انتشار 2012